3.1517 \(\int \frac{1}{\sqrt{a+b x} (c+d x)^{5/2}} \, dx\)

Optimal. Leaf size=66 \[ \frac{4 b \sqrt{a+b x}}{3 \sqrt{c+d x} (b c-a d)^2}+\frac{2 \sqrt{a+b x}}{3 (c+d x)^{3/2} (b c-a d)} \]

[Out]

(2*Sqrt[a + b*x])/(3*(b*c - a*d)*(c + d*x)^(3/2)) + (4*b*Sqrt[a + b*x])/(3*(b*c - a*d)^2*Sqrt[c + d*x])

________________________________________________________________________________________

Rubi [A]  time = 0.0082581, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {45, 37} \[ \frac{4 b \sqrt{a+b x}}{3 \sqrt{c+d x} (b c-a d)^2}+\frac{2 \sqrt{a+b x}}{3 (c+d x)^{3/2} (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*x]*(c + d*x)^(5/2)),x]

[Out]

(2*Sqrt[a + b*x])/(3*(b*c - a*d)*(c + d*x)^(3/2)) + (4*b*Sqrt[a + b*x])/(3*(b*c - a*d)^2*Sqrt[c + d*x])

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+b x} (c+d x)^{5/2}} \, dx &=\frac{2 \sqrt{a+b x}}{3 (b c-a d) (c+d x)^{3/2}}+\frac{(2 b) \int \frac{1}{\sqrt{a+b x} (c+d x)^{3/2}} \, dx}{3 (b c-a d)}\\ &=\frac{2 \sqrt{a+b x}}{3 (b c-a d) (c+d x)^{3/2}}+\frac{4 b \sqrt{a+b x}}{3 (b c-a d)^2 \sqrt{c+d x}}\\ \end{align*}

Mathematica [A]  time = 0.0153541, size = 46, normalized size = 0.7 \[ \frac{2 \sqrt{a+b x} (-a d+3 b c+2 b d x)}{3 (c+d x)^{3/2} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b*x]*(c + d*x)^(5/2)),x]

[Out]

(2*Sqrt[a + b*x]*(3*b*c - a*d + 2*b*d*x))/(3*(b*c - a*d)^2*(c + d*x)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 53, normalized size = 0.8 \begin{align*} -{\frac{-4\,bdx+2\,ad-6\,bc}{3\,{a}^{2}{d}^{2}-6\,abcd+3\,{b}^{2}{c}^{2}}\sqrt{bx+a} \left ( dx+c \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)^(1/2)/(d*x+c)^(5/2),x)

[Out]

-2/3*(b*x+a)^(1/2)*(-2*b*d*x+a*d-3*b*c)/(d*x+c)^(3/2)/(a^2*d^2-2*a*b*c*d+b^2*c^2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(1/2)/(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 3.65885, size = 250, normalized size = 3.79 \begin{align*} \frac{2 \,{\left (2 \, b d x + 3 \, b c - a d\right )} \sqrt{b x + a} \sqrt{d x + c}}{3 \,{\left (b^{2} c^{4} - 2 \, a b c^{3} d + a^{2} c^{2} d^{2} +{\left (b^{2} c^{2} d^{2} - 2 \, a b c d^{3} + a^{2} d^{4}\right )} x^{2} + 2 \,{\left (b^{2} c^{3} d - 2 \, a b c^{2} d^{2} + a^{2} c d^{3}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(1/2)/(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

2/3*(2*b*d*x + 3*b*c - a*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*c^4 - 2*a*b*c^3*d + a^2*c^2*d^2 + (b^2*c^2*d^2 -
2*a*b*c*d^3 + a^2*d^4)*x^2 + 2*(b^2*c^3*d - 2*a*b*c^2*d^2 + a^2*c*d^3)*x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + b x} \left (c + d x\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)**(1/2)/(d*x+c)**(5/2),x)

[Out]

Integral(1/(sqrt(a + b*x)*(c + d*x)**(5/2)), x)

________________________________________________________________________________________

Giac [B]  time = 1.08413, size = 173, normalized size = 2.62 \begin{align*} -\frac{{\left (\frac{2 \,{\left (b x + a\right )} b^{4} d^{2}}{b^{8} c^{2} d^{4} - 2 \, a b^{7} c d^{5} + a^{2} b^{6} d^{6}} + \frac{3 \,{\left (b^{5} c d - a b^{4} d^{2}\right )}}{b^{8} c^{2} d^{4} - 2 \, a b^{7} c d^{5} + a^{2} b^{6} d^{6}}\right )} \sqrt{b x + a}}{24 \,{\left (b^{2} c +{\left (b x + a\right )} b d - a b d\right )}^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(1/2)/(d*x+c)^(5/2),x, algorithm="giac")

[Out]

-1/24*(2*(b*x + a)*b^4*d^2/(b^8*c^2*d^4 - 2*a*b^7*c*d^5 + a^2*b^6*d^6) + 3*(b^5*c*d - a*b^4*d^2)/(b^8*c^2*d^4
- 2*a*b^7*c*d^5 + a^2*b^6*d^6))*sqrt(b*x + a)/(b^2*c + (b*x + a)*b*d - a*b*d)^(3/2)